Colocalization of GWAS and eQTL Signals Detects Target Genes

Farhad Hormozdiari recently developed a method for combining genome-wide association studies (GWASs) and quantitative trait loci (eQTL) studies in a statistical framework that quantifies the probability of each variant to be causal while allowing an arbitrary number of causal variants. Together with collaborators at the University of Oxford and Broad Institute of MIT and Harvard, we present a paper in The American Journal of Human Genetics. Here, we describe eQTL and GWAS CAusal Variants Identification in Associated Regions (eCAVIAR). We apply our approach to datasets from several GWASs and eQTL studies in order to assess its accuracy and potential contributions to colocalization and fine-mapping.

Integrating GWASs and eQTL studies is a promising way to explore the mechanism of non-coding variants on diseases. Integration of GWAS and eQTL data is challenging due to the uncertainty induced by linkage disequilibrium (LD), the non-random association of alleles at different loci, and presence of loci that harbor multiple causal variants (allelic heterogeneity). Current methods assume that each locus contains a single causal variant and expect loci to be independent and associated randomly.

eCAVIAR is a novel probabilistic model for integrating GWAS and eQTL data that extends the CAVIAR (Hormozdiari et al. 2014) framework to explicitly estimate the posterior probability of the same variant being causal in both GWAS and eQTL studies, while accounting for allelic heterogeneity and LD. Our approach can quantify the strength between a causal variant and its associated signals in both studies, and it can be used to colocalize variants that pass the genome-wide significance threshold in GWAS. For any given peak variant identified in GWAS, eCAVIAR considers a collection of variants around that peak variant as one single locus.

We apply eCAVIAR to the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) dataset and GTEx dataset to detect the target gene and most relevant tissue for each GWAS risk locus. When applied to the MAGIC dataset’s 2 phenotypes, eCAVIAR identifies genetic variants that are causal in both eQTL and GWAS. Further, eCAVIAR detects a large number of loci where the GWAS causal variants are clearly distinct from the causal variants in the eQTL data. Interestingly, eCAVIAR also identifies genes that colocalize in one tissue yet can be excluded in others. For the majority of loci in which we identify a single variant causal for both GWAS and eQTL, eCAVIAR implicates more than one causal variant across the 45 tissues.

We observe that eCAVIAR outperforms existing methods even when there are different values of non-colocalization. Using simulated datasets, we compared accuracy, precision, and recall rate of eCAVIAR to RTC (Nica et al. 2010) and COLOC (Giambartolomei et al. 2014), two current methods for eQTL and GWAS colocalization. Our results show that eCAVIAR has high confidence for selecting loci to be colocalized between the GWAS and eQTL data and is conservative in selecting a locus to be colocalized.

We hope that future applications of eCAVIAR will advance identification of specific GWAS loci that share a causal variant with eQTL studies in a tissue, thus providing insight into presently unclear disease mechanisms.

Figure2

Overview of eCAVIAR.

 

eCAVIAR was created by Farhad Hormozdiari, Ayellet V. Segre, Martijn van de Bunt, Xiao Li, Jong Wha J Joo, Michael Bilow, Jae Hoon Sul, Bogdan Pasaniuc and Eleazar Eskin. The article is available at: http://www.cell.com/ajhg/abstract/S0002-9297(16)30439-6.

Visit the following page to download CAVIAR and eCAVIAR: http://genetics.cs.ucla.edu/caviar/

The full citation to our paper is:

Sorry, no publications matched your criteria.

Our paper builds upon a method introduced in a previous publication:

Sorry, no publications matched your criteria.

Chromosome conformation elucidates regulatory relationships in developing human brain

Farhad Hormozdiari, a recent ZarLab alumni, contributed to a paper published this week in Nature. Our paper reports new findings on genetic factors related to human cognition and neurodevelopmental disorders, the result of a collaboration with UCLA’s David Geffen School of Medicine and the School of Biotechnology and Biomolecular Sciences at University of New South Wales. Farhad implemented the software package CAVIAR which was utilized to identify the causal variants and interpretation of data.

Neurodevelopmental disorders such as autism and schizophrenia are thought to originate during embryonic development of the cerebral cortex. The project focused on the 3D interactions of genome-wide chromatin contacts, the areas of a cell’s nucleus that package chromosomes into DNA and influence cell replication. Chromatin contacts regulate gene expression in specific tissues, and mapping their interactions within chromosomes provides important biological insights into the malfunctioning gene regulatory mechanisms that drive these disorders.

The project generated high-resolution 3D maps of chromatin contacts active during development of the cortex region of the human brain. These maps enabled a large-scale annotation of previously uncharacterized regulatory mechanisms tied to the evolution of human cognition and disease. Using this data, the paper identified hundreds of genes involved with human cognitive function. Next, the paper integrated chromatin contacts with noncoding variants previously identified in schizophrenia genome-wide association studies (GWAS) and performed several analyses to explore the relationships of interactions between chromatin and biological function.  One of the uses of CAVIAR in the paper was to verify that the causal variants involved in schizophrenia GWAS are in fact compatible with the 3D maps of chromatin contacts.

The paper also found several highly interacting chromatin regions that correlate with levels of gene expression and are associated with promoters, positive transcriptional regulators, and enhances—areas of the genome that shape cell replication and neurological development. The paper identified specific sets of genes enriched in known intellectual disability risk genes, including mutations known to cause autosomal recessive primary microcephaly. The GWAS results identified approximately 500 genome-wide significant schizophrenia-associated loci, about 30% of which interact with schizophrenia SNPs exclusively in developing brain tissue. Genome editing in human neural progenitors suggests that one of these distal schizophrenia GWAS loci regulates FOXG1 expression, supporting its potential role as a schizophrenia risk gene.

This work provides a framework for understanding the effect of non-coding regulatory elements on human brain development and the evolution of cognition, and highlights novel mechanisms underlying neuropsychiatric disorders. Read the paper for a detailed account of our data, methods, and results: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature19847.html

The CAVIAR program was developed by Farhad Hormozdiari and is freely available for download on the following webpage: http://genetics.cs.ucla.edu/caviar/

The full citation to our paper is:

Sorry, no publications matched your criteria.

 

figure

Annotation of schizophrenia-associated loci identified by a GWAS of chromatin contact data.

ZarLab goes to Vancouver for ASHG!

serghei

Last week many members of our group traveled to Vancouver, British Columbia, for the annual meeting of the American Society of Human Genetics. The 66th Annual Meeting, which took place October 18-22, 2016, featured over 3000 talks, workshops, and poster presentations on topics such as bioinformatics and computational methods, developmental genetics and gene function, cancer and cardiovascular diseases, evolutionary and population genetics, and genetic counseling.

ZarLab contributed 8 poster presentations and one research talk. Serghei Mangul discussed his recent work on dumpster-diving techniques in a talk titled, “Comprehensive analysis of RNA-sequencing to find the source of every last read across 544 individuals from 53 tissues,” as part of the Interpreting the Transcriptome in Health and Disease symposium. You can view his slides here: https://sergheimangul.files.wordpress.com/2016/10/ashg2016_public.pdf

ZarLab in Vancouver!

ZarLab in Vancouver!

Recent alumni Farhad Hormozdiari received a Reviewers’ Choice ribbon for his poster titled, “Joint fine mapping of GWAS and eQTL detects target gene and relevant tissue.” Only the top 10% of posters by topic receive this honor, as determined by the reviewers’ scores of the submitted abstracts. Congratulations, Farhad!

Other posters presented by members of our group:

  • Prevalence of allelic heterogeneity in complex traits. Eleazar Eskin
  • Modeling the covariance of effect sizes in a meta-analysis. Dat Duong
  • Estimating regional heritability in the presence of linkage disequilibrium. Lisa Gai
  • linear mixed models for quantitative traits in health-system scale data. Michael Bilow
  • Utilizing allele specific expression to identify cis-regulatory variants. Jennifer Zou
  • Haplotype-based predictors for complex trait association. Rob Brown
  • Repeat elements expression profile across different tissues in GTEx samples. Harry Yang