Widespread Allelic Heterogeneity in Complex Traits

This week, our group published a paper in the American Journal of Human Genetics that presents a new computational method for improving the accuracy of genome wide association studies. ZarLab alumni Farhad Hormozdiari (PhD, 2016) developed the method, CAVIAR (CAusal Variants Identification in Associated Regions), a statistical framework that quantifies the probability of each variant to be causal while allowing an arbitrary number of causal variants.

Genome-wide association studies (GWASs) identify genetic variants associated with diseases and traits. Recent successes in GWASs make it possible to address important questions about the genetic architecture of complex traits, such as allele frequency and effect size. A more comprehensive understanding of these aspects will guide the development of new methods for fine mapping and association mapping of complex traits—and the discovery of new biomarkers for disease diagnosis and treatment.

One lesser-known aspect of complex traits is the extent of allelic heterogeneity (AH). Allelic heterogeneity occurs when different mutations at the same locus affects the same phenotype. AH is very common in Mendelian traits, but we know little about the extent to which AH contributes to common, complex disease. Undetected AH could potentially bias results of an association study, leading to false positive results.

Levels of Allelic Heterogeneity in eQTL Studies. For more information, see our paper.

In order to take AH into account while conducting a GWAS, we developed a computational method to infer the probability of AH. Our method quantifies the number of independent causal variants at a locus that can be responsible for the observed association signals detected in a GWAS. Our method is incorporated into the CAVIAR approach, and it is based on the principle of jointly analyzing association signals (i.e., summary level Z-scores) and LD structure in order to estimate the number of causal variants.

Our results show that our method is more accurate than the standard conditional method (CM). We applied our novel method to three GWASs and four expression quantitative trait loci (eQTL) datasets. We identified a total of 4,152 loci with strong evidence of the presence of AH. The proportion of all loci with identified AH is 4%–23% in eQTLs, 35% in GWASs of high-density lipoprotein (HDL), and 23% in GWASs of schizophrenia. For eQTLs, we observed a strong correlation between sample size and the proportion of loci with AH, indicating that statistical power prevents identification of AH in other loci.

One of the main benefits of our method is that it requires only summary statistics. Summary statistics of a GWAS or eQTL study are widely available, so our method is applicable to most existing datasets. We have shown that AH is widespread and more common than previously estimated in complex traits, both in GWASs and eQTL studies.

Our results highlight the importance of accounting for the presence of multiple causal variants when characterizing the mechanism of genetic association in complex traits. Falling to account for AH can reduce the power to detect true causal variants and can explain the limited success of fine mapping of GWASs.

In a related study, researchers at University of California, Irvine, and University of Kansas, identified an analogous signal in eQTLs from genetic sequencing of flies. King et al. (2014) observe that the vast majority of genes with eQTL are more consistent with heterogeneity than bi-allelism. Read more about this related study, “Genetic Dissection of the Drosophila melanogaster Female Head Transcriptome Reveals Widespread Allelic Heterogeneity.”

CAVIAR was created by Farhad Hormozdiari, Emrah Kostem, Eun Yong Kang, Bogdan Pasaniuc and Eleazar Eskin. Software is freely available for download: http://genetics.cs.ucla.edu/caviar/

For more information, see our full paper, which can be accessed through AJHGhttp://www.cell.com/ajhg/abstract/S0002-9297(17)30149-0

The full citation of our paper:
Hormozdiari F, Zhu A, Kichaev G, Ju CJ, Segrè AV, Joo JW, Won H, Sankararaman S, Pasaniuc B, Shifman S, Eskin E. Widespread allelic heterogeneity in complex traits. The American Journal of Human Genetics. 2017 May 4;100(5):789-802.

Selection in Europeans on Fatty Acid Desaturases Associated with Dietary Changes

Farhad Hormozdiari and Eleazar Eskin recently applied an extension of CAVIAR to assess signal selection in European ancestry. CAVIAR is a probabilistic method for detecting a confidence set of SNPs containing all the causal variants in a locus that are within a predefined probability (e.g., 90% or 95%)—while taking into account biases generated by linkage disequilibrium. Farhad, now a post-doctoral scholar at Boston University, developed CAVIAR while a PhD student at UCLA.

This project was led by Matthew T. Buckley and Fernando Racimo at the University of California, Berkeley, and Morten E. Allentoft at the University of Copenhagen. Alleles with strong selection signals have been recently selected for and are thought to carry an evolutionary advantage for individuals in the population. Identifying these alleles helps expand our understanding of the selective pressures that shaped historic populations.

Allele frequency changes across FADS region. For more information, see our full paper.

In order to analyze the selective processes in Europeans across space and time, the project compared sequencing data from FADS genes obtained from present-day and Bronze Age (5000 to 3000 years ago) Europeans. We focused on FADS genes because prior studies indicate they are subjected to strong positive selection in Africa, South Asia, Greenland, and Europe. FADS genes encode fatty acid desaturases that are important for the conversion of short chain polyunsaturated fatty acids (PUFAs) to long chain fatty acids. In other words, selective pressure in the FADS genes may be linked to dietary adaptations.

Other analyses conducted by the project show that alleles in the FAD2 gene display the strongest changes in allele frequency since the Bronze Age, and this change shows associations with expression changes and multiple lipid-related phenotypes. Farhad and Eleazar used CAVIAR to look for presence of allelic heterogeneity, an adaptive process in which different mutations at the same locus cause the same phenotype. In an evolutionary context, presence suggests that a strong pressure selective pressure likely acted upon the population.

Application of CAVIAR to genomic data from the 1000 Genomes Project and 54 Bronze Age Europeans revealed that specific causal variants within the FADS2 gene have been subjected to selective pressure. In particular, FADS2 shows evidence of allelic heterogeneity in three tissue types: transformed fibroblast cells (Pr(2 causal variants) = 0.72), left heart ventricle (Pr(2 causal variants) = 0.74), and whole blood (Pr(3 causal variants) = 0.74).

The project’s comparison of modern to Bronze Age European genomic data show that selection has indeed strongly acted on the FADS gene cluster over the past 3000 years. The selective patterns observed in European data may be driven by a change in the dietary composition of fatty acids following the human transition from hunting-and-gathering to agriculture. As Europeans obtained more lipids from plants, rather than from fish and mammals, their genes adapted to optimize metabolism of these cereal-based lipids.

For more information, see our paper, which is available for download through Molecular Biology and Evolution: https://www.ncbi.nlm.nih.gov/pubmed/28333262.

The full citation to our paper is: 

Buckley, M.T., Racimo, F., Allentoft, M.E., Jensen, M.K., Jonsson, A., Huang, H., Hormozdiari, F., Sikora, M., Marnetto, D., Eskin, E. and Jørgensen, M.E., 2017. Selection in Europeans on fatty acid desaturases associated with dietary changes. Molecular biology and evolution.

This project used a method introduced in a previous publication: 

Hormozdiari, Farhad; Kostem, Emrah ; Kang, Eun Yong ; Pasaniuc, Bogdan ; Eskin, Eleazar

Identifying causal variants at Loci with multiple signals of association. Journal Article

In: Genetics, 198 (2), pp. 497-508, 2014, ISSN: 1943-2631.

Abstract | Links | BibTeX

CAVIAR was created by Farhad HormozdiariEmrah KostemEun Yong KangBogdan Pasaniuc, and Eleazar Eskin. Visit the following page to download CAVIAR and eCAVIAR: http://genetics.cs.ucla.edu/caviar/.

Incorporating prior information into association studies

Genome-wide association studies (GWAS) seek to identify genetic variants involved in specific traits. GWAS are advantageous for linking variants with traits, because they interrogate the genome in a uniform way. In other words, they examine the whole genome without a preconceived notion of where the associations may lie.

However, we now know a lot about the putative function of genetic variants due to tremendous progress in functional genomics. In many cases, we even know which variants are more likely to be involved in disease when compared to others. Advancements in our understanding of functional genomics motivate the strategic incorporation of prior information in GWAS.

Our group has been interested in this problem for many years. One challenge to addressing this problem is that the widely utilized approach for GWAS involves evaluating an association statistic at each single nucleotide polymorphism (SNP), and these methods take into account only one SNP at a time. The results are then adjusted for multiple testing, and an association is identified if a statistic exceeds a certain threshold. This approach can be described as a frequentist approach. On the other hand, one can incorporate prior information on which SNPs are likely to be the causal variants affecting the trait. This approach is inherently a Bayesian concept. Reconciling these two approaches is not straightforward.

Average power under varying relative risks. For more information, see our paper.

In a 2008 paper published in Genome Research, our group proposed a modification of the multiple testing framework to address this problem. Instead of using the same specific threshold for all of the association statistics, we use a different threshold for each association statistic, where the thresholds are adjusted based on the prior information. Our method takes advantage of the correlation structure by considering multiple markers within a region. In our paper, we demonstrate how to set the thresholds in order to optimally utilize prior information and maximize statistical power.

Using prior information in genetic association studies increases power over traditional association studies while maintaining the same overall false-positive rate. Compared to standard methods, our approach is equally simple to apply to association studies, produces interpretable results as p-values, and is optimal in its use of prior information in regards to statistical power.

In 2012, we extended this work to use only tag SNPs for the putative causal variant. This project was developed by Gregory Darnell (then UCLA undergraduate, now PhD student at Princeton University), Dat Duong (then UCLA undergraduate, now UCLA PhD student), and Buhm Han.

More recently, we have applied this framework to incorporate functional information in analysis of eQTL data. In this case, incorporating genomic annotation of variants significantly increases the statistical power of existing eQTL methods and detects more eGenes in comparison to standard approaches. Read the blog post on this paper, and download the full article.

For more information on our general approach, see our paper, which is available for download through Bioinformatics:
In addition, the open source implementation of our 2012 paper, MASA, which was developed by Greg Darnell and Dat Duong, is freely available for download at http://masa.cs.ucla.edu/.

The full citations to our papers on this topic are:

Darnell, Gregory; Duong, Dat ; Han, Buhm ; Eskin, Eleazar

Incorporating prior information into association studies. Journal Article

In: Bioinformatics, 28 (12), pp. i147-i153, 2012, ISSN: 1367-4811.

Abstract | Links | BibTeX

Eleazar Eskin. “Increasing Power in Association Studies by using Linkage Disequilibrium
Structure and Molecular Function as Prior Information.” Genome Research.
18(4):653-60 Special Issue Proceedings of the 12th Annual Conference on Research
in Computational Biology (RECOMB-2008), 2008.