Thesis Defense: Dr. Eun Yong Kang

Eun Yong Kang in our group defended his thesis on Monday Nov 25th, 2013. 2:30pm – 4:30pm in 4760 Boelter Hall.

The title of his defense was “Computational Genetic Approaches for Understanding the Genetic Architecture of Complex Traits”. The video of this defense is now available here. Fortunately for the lab, Eun is now a post-doc in the group.

The abstract of his thesis defense was:
Recent advances in genotyping and sequencing technology have enabled researchers to collect an enormous amount of high-dimensional genotype data. These large scale genomic data provide unprecedented opportunity for researchers to study and analyze the genetic factors of human complex traits. One of the major challenges in analyzing these high-dimensional genomic data is requiring effective and efficient computational methodologies. In this talk, I will focus on three problems that I have worked on. First, I will introduce a method for inferring biological networks from high-throughput data containing both genetic variation and gene expression profiles from genetically distinct strains of an organism. For this problem, I use causal inference techniques to infer the presence or absence of causal relationships between yeast gene expressions in the framework of graphical causal models. Second, I introduce efficient pairwise identity by descent (IBD) association mapping method, which utilizes importance sampling to improve efficiency and enable approximation of extremely small p-values. Using the WTCCC type 1 diabetes data, I show that Fast-Pairwise cansuccessfully pinpoint a gene known to be associated to the disease within the MHC region. Finally, I introduce a novel meta analytic approach (Meta-GxE) to identify gene-by-environment interactions by aggregating the multiple studies with varying environmental conditions. Meta-GxE approach jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. This approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. Application of this approach to 17 mouse studies identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which show significant evidence of involvement in gene-by-environment interactions.

Eun’s talk covered the following papers:

Kang, Eun Yong; Han, Buhm; Furlotte, Nicholas; Joo, Jong Wha J; Shih, Diana; Davis, Richard C; Lusis, Aldons J; Eskin, Eleazar

Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice Journal Article

In: PLoS Genet, 10 (1), pp. e1004022, 2014, ISSN: 1553-7404.

Abstract | Links | BibTeX

Han, Buhm; Kang, Eun Yong ; Raychaudhuri, Soumya ; de Bakker, Paul I W; Eskin, Eleazar

Fast Pairwise IBD Association Testing in Genome-wide Association Studies. Journal Article

In: Bioinformatics, 2013, ISSN: 1367-4811.

Abstract | Links | BibTeX

Kang, Eun Yong; Ye, Chun ; Shpitser, Ilya ; Eskin, Eleazar

Detecting the presence and absence of causal relationships between expression of yeast genes with very few samples. Journal Article

In: J Comput Biol, 17 (3), pp. 533-46, 2010, ISSN: 1557-8666.

Abstract | Links | BibTeX

Mixed Models and Confounding Factors Talk @ Simons Institute

mouse-phylogeny-slideI recently gave a talk on mixed models and confounding factors which is a long time interest of our research group at a workshop which is part of the Evolutionary Biology and the Theory of Computing program which was held at the Simons Institute on the UC Berkeley Campus. The talk was held on February 21st. This talk spans many years of work in our group including work by Hyun Min Kang (now at Michigan), Noah Zaitlen (now at UCSF), and Jimmie Ye (now at Harvard) as well as a sneak peak at very recent work by Joanne Joo, Jae-Hoon Sul and Buhm Han.

The video of the talk is available here and is also on our YouTube Channel ZarlabUCLA.

The papers which are covered in the talk include the EMMA, EMMAX and ICE papers published in 2008 as well as a very new paper that should be coming out soon. The key papers from the talk are:

Kang, Hyun Min; Sul, Jae Hoon ; Service, Susan K; Zaitlen, Noah A; Kong, Sit-Yee Y; Freimer, Nelson B; Sabatti, Chiara ; Eskin, Eleazar

Variance component model to account for sample structure in genome-wide association studies. Journal Article

In: Nat Genet, 42 (4), pp. 348-54, 2010, ISSN: 1546-1718.

Abstract | Links | BibTeX

Kang, Hyun Min; Zaitlen, Noah A; Wade, Claire M; Kirby, Andrew ; Heckerman, David ; Daly, Mark J; Eskin, Eleazar

Efficient control of population structure in model organism association mapping. Journal Article

In: Genetics, 178 (3), pp. 1709-23, 2008, ISSN: 0016-6731.

Abstract | Links | BibTeX

Kang, Hyun Min; Ye, Chun ; Eskin, Eleazar

Accurate discovery of expression quantitative trait loci under confounding from spurious and genuine regulatory hotspots. Journal Article

In: Genetics, 180 (4), pp. 1909-25, 2008, ISSN: 0016-6731.

Abstract | Links | BibTeX

NOVA Video on what we do

A relatively recent excellent documentary developed by NOVA gives a really nice summary of the research area that we work in and the transformation of medicine due to the development of genome sequencing. It is a great place to start learning about our field.

Cracking Your Genetic Code
We are on the brink of a new era of personalized, gene-based medicine. Are we ready for it? Aired March 28, 2012 on PBS